
CIS 4004: AJAX – Part 1 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Spring 2013

Introduction To AJAX – Part 1

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cis4004/spr2013

CIS 4004: AJAX – Part 1 Page 2 © Dr. Mark Llewellyn

 • Ajax is a catchy name that is given to a JavaScript programming

technique that enables data to be moved between the browser and

the server without the usual “round-trip to the server and a page

refresh” – the only model by which the Web previously worked.

• In the previous model, even updating a single word in the page

required that the server send an entirely new page to the browser.

A new page was the only context in which new data could arrive in

the browser.

• Ajax provides a new model. Using Ajax you can request data

from the server and then use the DOM scripting techniques, with

which you are now familiar, to add that new data into the page.

This occurs without the user having to wait for an entire new page

to load – in fact, without reloading the page at all.

AJAX

CIS 4004: AJAX – Part 1 Page 3 © Dr. Mark Llewellyn

 • This capability lets you deliver a more application-like

experience to the user.

• If the user has a reasonably fast Internet connection, there is

often little or no perceivable delay between clicking a link and

seeing new data appear in the page. With Ajax, the response of

your site is less of the old “click and wait” experience and

much more like a regular application running on the user’s

local system. Things happen as soon as you click or select

from a menu without the rest of the screen changing.

• A more subtle but powerful change that Ajax brings is a sense

of place; instead of perceiving the site as a series of discrete

pages, the experience is now a workspace that changes and

updates as the user works.

AJAX

CIS 4004: AJAX – Part 1 Page 4 © Dr. Mark Llewellyn

 • Ajax is fairly simple to understand and not too difficult to

implement.

• The first A of Ajax stands for Asynchronous. This means that

there is no timing requirement for a communication

transmission. In other words, the Ajax request that is made by

the browser does not affect the browser’s other activities.

• In the regular round-trip model, the user can do nothing after,

say, submitting a form, except wait until a new page is served

back to the browser. The process is entirely synchronous – one

event must complete before the next event can start.

AJAX – By The Letters

CIS 4004: AJAX – Part 1 Page 5 © Dr. Mark Llewellyn

 • Ajax is asynchronous, once the request is sent off to the server,

control is immediately restored to the user, who can continue

working while the request is being fulfilled.

• When the requested data is delivered to the browser from the

server, a pre-assigned callback function is automatically called

and the data is then processed and displayed by JavaScript.

• The J in Ajax is for JavaScript. JavaScript handles the entire

Ajax transaction. We’ll be focusing on the JavaScript

programming techniques that allow you to implement Ajax

functionality in your web site.

• The second A in Ajax is simply And.

AJAX – By The Letters

CIS 4004: AJAX – Part 1 Page 6 © Dr. Mark Llewellyn

 • The X in Ajax stands for XML. This is somewhat misleading.

In the original proposal, XML was the data format that would

be returned from the server.

• However, data can be returned from the server in many formats,

of which XML is one. For example, HTML, plain text, and

JavaScript Object Notation (JSON) are all commonly requested

data formats used in Ajax transactions. We’ll see how to work

with all of these in subsequent parts of the notes.

– JSON is a data format based on the object literal construct and is a very

compact data format that can be evaluated by JavaScript as code. As a

result, JSON is frequently replacing XML as the data format for modern

applications. However, Ajax doesn’t sound as good as Ajax!

AJAX – By The Letters

CIS 4004: AJAX – Part 1 Page 7 © Dr. Mark Llewellyn

 • In order to utilize the benefits of Ajax, your web page will be

interacting with the web server while the user manipulates your

web page. Thus, we need a server to host the web page and to

be able to respond to the user requests.

• The Apache HTTP server is a very popular server for this sort

of application. Go to the Apache web site at http://apache.org

and download and install any of the more recent versions of

Apache compatible with your system. The most recent version

is 2.4.4, but any of the versions in the 2.2.X family would be

fine.

• During the installation process, set the port for Apache to listen

on to 8080, or modify the httpd.conf file once it is

installed.

Setting Up A Server

http://apache.org/
http://apache.org/
http://apache.org/
http://apache.org/
http://apache.org/

CIS 4004: AJAX – Part 1 Page 8 © Dr. Mark Llewellyn

 • When Apache is installed correctly and the server is running,

enter localhost:8080 (or use whichever port you have

Apache listening on) and you should see the browser display as

shown:

Setting Up A Server

Note: I am running

this Apache server

on port 8081.

CIS 4004: AJAX – Part 1 Page 9 © Dr. Mark Llewellyn

 • The Hypertext Transfer Protocol (HTTP) defines how

transactions between the browser and server are handled.

While the details of the protocol can get somewhat

complicated, you really only need to understand the GET and

POST methods of the protocol.

• In the scope of an HTTP request method, we mean method as in

“a way of doing things” and not as in “a function in an object.”

• A server request begins with an action that causes the browser

to make either a GET or POST request to the server.

Communicating With The Server

CIS 4004: AJAX – Part 1 Page 10 © Dr. Mark Llewellyn

 • A GET request, typically made when a link is clicked, is a URL

with a query string, such as:

display_product_info.html?productID=34553&color=red

• The query string (highlighted) is separated from the rest of the

URL with a question mark. It consists of a number of

name/value pairs separated by ampersands that are passed to

the requested page. These name/value pairs serve the same

purpose as the arguments passed to a function; they contain

data that the requested page will use when processing the

request.

The GET Method

CIS 4004: AJAX – Part 1 Page 11 © Dr. Mark Llewellyn

 • The entire GET request string is visible in the browser’s

address bar, and it’s tempting for users to modify the query

string to see what they might get (a different user’s account ,

perhaps?)

• Thus, it’ s important to only use GET when the user is

requesting non-sensitive information – a particular news story

perhaps.

The GET Method

CIS 4004: AJAX – Part 1 Page 12 © Dr. Mark Llewellyn

 • A POST method is typically made when a form is submitted. If

you look at the markup for a form, you’ll notice that the

method attribute is almost always POST.

• For each field of the form, the name attribute value and the

data entered in that field are passed as the name/value pair.

• However, while the URL is visible in the browser’s address

bar, the name/value pairs are sent behind the scenes to the

browser and are not visible in the address bar.

• As a rule of thumb, if you are sending data that will be stored

on the server, use POST. It you are simply requesting a page,

use GET.

The POST Method

CIS 4004: AJAX – Part 1 Page 13 © Dr. Mark Llewellyn

 • Under what we’ll refer to as the traditional model – the only model

prior to Ajax – the data is passed to the server via a POST or GET

request and is then processed by the middleware (such as PHP,

.NET, or Java). A new web page is then generated and served back

to the browser in response to the request.

• The downside of the traditional model is that no user activity can

take place between the request being submitted and the new page

being entirely rendered in the browser. Once that link is clicked or

the form submitted, the user must wait for that new page to display.

• Although a slow response can lead to frustration and random

clicking on the part of the user, the synchronous nature of the

traditional “click and wait” mode is very familiar and comfortable

to the user.

The Traditional Model

CIS 4004: AJAX – Part 1 Page 14 © Dr. Mark Llewellyn

 • Under the Ajax model, when a request is made to the server, again

using a POST or GET request, it is made via the browser’s XHR

(XMLHttpRequest) object.

• We’ll look in more detail at the XHR object later, but it is the key to

Ajax because it acts as an intermediary between the browser and the

server.

• Actually initiating an Ajax request by calling the XHR object takes

a matter of milliseconds, and then control is returned to the user

while the XHR object fulfills the request.

• Because the request is now happening “in the background”, the user

can continue working as soon as the XHR object receives the

request.

The Ajax Model

CIS 4004: AJAX – Part 1 Page 15 © Dr. Mark Llewellyn

XHR

The Ajax Model

Traditional Round-trip Request

Web Server

Brower Brower

Web Server

Ajax-enabled Request

Time elapsed until user regains

control of the page

CIS 4004: AJAX – Part 1 Page 16 © Dr. Mark Llewellyn

 • The most significant advantage of using Ajax is that you can

request specific data, not just an entire page, as a response.

• For example, the user could add an item to a shopping cart and,

instead of waiting while the server is updating the cart status, the

user could do more shopping and add a second item.

• Once the server update is complete, the server could return just the

text needed to update the onscreen cart display, and this text would

then be added into the page using DOM scripting without a refresh

of the page.

• With data able to flow into the browser in this fashion and the

necessity for constant page refresh removed, a web site can be

transformed into a responsive online application. This is why Ajax

has generated so much excitement among web developers.

The Ajax Model

CIS 4004: AJAX – Part 1 Page 17 © Dr. Mark Llewellyn

 • Ajax is made possible because of the browser’s
XMLHttpRequest (XHR) object.

• The XHR object can make requests to the server and receive data in

response. It was developed as part of Microsoft’s Active X strategy

to enable its online mail products to communicate with a mail

server.

• It was only recently made part of the official W3C standard, even

though it has been well supported in all the major browsers for

several years.

• Microsoft’s implementation of the XHR object is different from the

implementation in W3C browsers, so like the event object that

we’ve already dealt with, some cross-browser compatibility issues

exist.

The XMLHttpRequest Object

CIS 4004: AJAX – Part 1 Page 18 © Dr. Mark Llewellyn

 • To use the XMLHttpRequest object, you must be able to

communicate with it and then monitor its activity so you know when

it has successfully acquired the requested data.

• The way you do this is to write a function (JavaScript) that can

communicate with the browser’s XHR object and can handle all

your application’s Ajax requests.

• This kind of a function is known as a wrapper. A wrapper servers as

an interface to an object of usually complex functionality - in this

case the XHR object – and manages all communications with it.

• Your code will talk to the wrapper function, and the wrapper

function will be written to handle the complexities of managing the

XHR object.

How to Use The XMLHttpRequest Object

CIS 4004: AJAX – Part 1 Page 19 © Dr. Mark Llewellyn

 • When you call the wrapper function, you will pass it two

arguments:

– The name of the requested resource – a filename that will provide

the data you want from the server.

– The name of your callback function – a function that will be called

when the request completes. This function will receive the returned

data and process it in some way according to your applications

needs.

• An XMLHttpRequest wrapper function greatly simplifies your

life because it abstracts away from the rest of your code all the

complexities of managing an Ajax transaction and the associated

cross-browser differences.

How to Use The XMLHttpRequest Object

CIS 4004: AJAX – Part 1 Page 20 © Dr. Mark Llewellyn

 • At any point where your application requires data from the

server, you can just call the wrapper function, passing it the two

required arguments.

• When the transaction is complete and the server returns the

requested data, the wrapper function will pass the data to the

specified callback function – the function you write to process the

returned data.

• Once the callback function is called, the process is complete.

• Next, let’s look at creating this wrapper function.

How to Use The XMLHttpRequest Object

CIS 4004: AJAX – Part 1 Page 21 © Dr. Mark Llewellyn

 • The wrapper function needs to accomplish five basic operations:

– Create a new instance of the XHR object.

– Define a function to monitor the request’s progress.

– Send the request via the XHR instance.

– Check that the request was successful when the server responds.

– Pass the returned data to the assigned callback function to be used by the

application.

• We’ll look at each of these steps individually, then put them all

together into our wrapper function.

How to Use The XMLHttpRequest Object

CIS 4004: AJAX – Part 1 Page 22 © Dr. Mark Llewellyn

 • The first step in using the XHR object is to instantiate a new

instance of it. In this example, we’ll store it in a variable called
ajaxObj.

• For a W3C browser, you would write:

 ajaxObj = new XMLHttpRequest();

• For a Microsoft browser, you would write:

 ajaxObj = new ActiveXObject(“Microsoft.XMLHTTP”);

• Written as a single cross-browser compatible statement we’d have:

 var ajaxObj = (window.ActiveXObject)

 ? new XMLHttpRequest()

 : new ActiveXObject(“Microsoft.XMLHTTP”);

Creating The Wrapper Function: Step 1

CIS 4004: AJAX – Part 1 Page 23 © Dr. Mark Llewellyn

 • After you’ve instantiated the XHR object, you can then use its

properties and methods to request and manage the movement of

data between the browser and the server.

• A crucial component of the XHR process is the server’ s

communication with the browser. Without this feedback from

the server, you would never know when the request has

completed.

• At key points in the process, the server updates the XHR object’s
readystate property with a numerical value that defines the

current state of the request.

• There are five possible values for the current state. These are

shown on the next page.

Creating The Wrapper Function: Step 2

CIS 4004: AJAX – Part 1 Page 24 © Dr. Mark Llewellyn

• The wrapper function can be notified each time this state changes

by monitoring the onreadystatechange event handler,

which as its name suggests is called each time the XHR object’s
readystate property is updated by the server.

Creating The Wrapper Function: Step 2
Value State

0 Uninitialized – the object exists but the open method has not

been called.

1 Loading – the open method has been called but the send

method has not.

2 Loaded – the send method has been called and the request is in

process.

3 Interactive – the server is sending a response.

4 Complete – the response has been sent.

CIS 4004: AJAX – Part 1 Page 25 © Dr. Mark Llewellyn

 • Because the order of these responses is different between

browsers, and because all you really need to know is when the

request is completed, you simply want to monitor for a

readystate property value of 4 each time the

onreadystatechange event handler is triggered.

• You do this by assigning a function to the

onreadystatechange event handler in which you can track

the state of the request.

• You need to specify that function before making the request,

because, as you can see from the descriptions of the values of the

readystate property, the server starts sending back request

state information even before the request is fully submitted.

Creating The Wrapper Function: Step 2

CIS 4004: AJAX – Part 1 Page 26 © Dr. Mark Llewellyn

 • As a result of all of this, after instantiating the XHR object, but

before you do anything with it, you want to define the function

that will process the onreadystatechange information.

• The XHR object also tracks the three-digit HTTP status of the

request. You are probably all too familiar with HTTP-status 404

– Page Not Found, which you get when you request a URL that

doesn’t point to a valid resource.

• What you want your code to do is to check for HTTP-status 200 –

success.

• Upon determining a status of 200, your object can safely assume

the request has arrived and pass whatever is in the response to the

callback function.

Creating The Wrapper Function: Step 2

CIS 4004: AJAX – Part 1 Page 27 © Dr. Mark Llewellyn

 • In the sequence of your code, once the readystate is 4, you

check for the request’s HTTP status (which is stored in the XHR
object’s status property).

• If the status is 200, the responseText property’s value – the

requested data – is passed to the callback function.

• This is normally done by assigning an anonymous function (a

function without a name) that makes these checks to the

onreadystatechange event handler each time the

readystate changes.

– Note: This is a very similar concept to the onload event handler, because

both are called by events that are not initiated by the user.

Creating The Wrapper Function: Step 2

CIS 4004: AJAX – Part 1 Page 28 © Dr. Mark Llewellyn

 • The code for this would look like:

 maAjaxObj.onreadystatechange = function {

 if (ajaxObj.readystate == 4 &&

 ajaxObj.status == 200)

 { cbFunc(ajaxObj.responseText);

 }//endif

 }//end monitor readystate

• With the monitoring now in place for the request, we’re all set to

make the actual request for the data that we want from the server.

Creating The Wrapper Function: Step 2

CIS 4004: AJAX – Part 1 Page 29 © Dr. Mark Llewellyn

 • The first decision you must make when requesting data from the

server is the method to use to make the request – GET or POST.

• Basically, if you just want to get data from the server, use the

request method GET. If you want to update data on the server,

use the request method POST.

• We’ll look at a GET method request first:

• A GET request requires the use of two methods of the XHR

object: open and send. The open method allows you to

specify the kind of request method (GET or POST) you want to

make, the name of the file you are requesting, and a Boolean

value that defines whether you are making an asynchronous or

synchronous request.

Creating The Wrapper Function: Step 3

CIS 4004: AJAX – Part 1 Page 30 © Dr. Mark Llewellyn

 • The format of this statement is:

 objName.open(requestMethod, URL, asynchronous?);

• If you set the third value to false, the application will stop running

until the request is fulfilled (synchronous behavior), which defeats

one of the key benefits of Ajax.

• Almost always, you’ll set the third parameter to true (asynchronous

mode) so that the user can continue working while the request is

being fulfilled.

• The name of the file is simply a URL and since we’re using a GET,

can be extended with a query string of name/value pairs, such as:

 myAjaxObj.open=(‘GET’, ‘lookUpInfo.php?username=Mark, true);

Creating The Wrapper Function: Step 3

CIS 4004: AJAX – Part 1 Page 31 © Dr. Mark Llewellyn

 • Now that the request is defined, you can send the request to the

server suing the send method.

• The format of this statement is:

 myAjaxObj.send(null);

• When using a GET method, the data argument of the send method is

always set to null; you don’t need to include any data with the send.

• If you want to send information to further define your request,

you can append a query string to the URL, as in the previous

example.

Creating The Wrapper Function: Step 3

CIS 4004: AJAX – Part 1 Page 32 © Dr. Mark Llewellyn

 • When sending a request with the POST method, two additional

steps are required.

• First you set the request method to POST.

• Second you don’t append a query string to the URL as you do

with a GET; any data that is part of the request is sent separately

from the URL as the argument of the send method.

• To do this, the content type of the HTTP header must be set

correctly using the XHR object ’ s setRequestHeader

method, so that this data is handled correctly when it arrives at

the server.

• The open and send steps for a POST request are shown on the

next page.

Creating The Wrapper Function: Step 3

CIS 4004: AJAX – Part 1 Page 33 © Dr. Mark Llewellyn

myAjaxObj.open = (‘POST’, ‘updateInfo.php’, true);

myAjaxObj.setRequestHeader(‘Content-Type’,’application/x-www-form-urlencoded’);

myAjaxObj.send(‘oldemail=mark@cs.edu&newemail=markl@cs.ucf.edu’);

Creating The Wrapper Function: Step 3

CIS 4004: AJAX – Part 1 Page 34 © Dr. Mark Llewellyn

 • Regardless of whether you use a GET or POST to make your

request, your Ajax function now needs to keep track of the

request by monitoring the onreadystatechange event

handler using the anonymous function assigned to it in step 2.

• Once you get a readystate of 4 and a status of 200, the

request data has arrived.

Creating The Wrapper Function: Step 4

CIS 4004: AJAX – Part 1 Page 35 © Dr. Mark Llewellyn

 • When the callback function is called, it is passed the

responseText property value as its argument, which is the

requested data, and the Ajax wrapper function ’ s work is

complete.

• The complete wrapper function that we’ve created in these five

steps is shown in its entirety on the next page.

Creating The Wrapper Function: Step 5

Note: All of the server-side files that you need for an Ajax application
that is running on an Apache server will reside in folders inside the
htdocs folder of Apache. As you can see on the next page, I’ve
created a folder named ajax_request inside of the Apache
htdocs folder.

CIS 4004: AJAX – Part 1 Page 36 © Dr. Mark Llewellyn

The Wrapper Function

CIS 4004: AJAX – Part 1 Page 37 © Dr. Mark Llewellyn

 • Next, we’ll use the Ajax function to request some text from a file
called basic_text.txt on the server.

• The Ajax function will return the file’s text as a string that we’ll

display in our browser page.

• A simple file request such as this requires no server-side

middleware (no PHP for example) – the file simply has to be at

the specified location on the server.

Using The Ajax Wrapper Function

CIS 4004: AJAX – Part 1 Page 38 © Dr. Mark Llewellyn

 • Shown on the next page is part of the markup that includes the

link which calls a function to request the data and an empty

element into which We’ll add the requested text when it is

received from the server. (The complete files are on the course

website for you to try.)

• In order to clearly establish the logical connection between the

calling function and its associated callback function, I use the

same basic name for both functions except for that the callback

function name is prefixed with “cb” (for callback).

• The readFile function called by the link passes the Ajax

function the two required arguments – the URL of the file and the

name of the callback function that will display the data when it is

returned.

Using The Ajax Wrapper Function

CIS 4004: AJAX – Part 1 Page 39 © Dr. Mark Llewellyn

// use the Ajax request function

// call to Ajax function

function readFile() { // makes the call to the ajaxObj

 ajaxRequest('basic_text.txt',cbReadFile);

}

// callback function

function cbReadFile(theData) { // process response from Ajax

function

 var theDisplay = document.getElementById('display');

 theDisplay.innerHTML = theData;

}

</script>

</head>

<body>

<div>

 <h3>My First Ajax Demo</h3>

 <a href="basic_text.txt" onclick="readFile(); return

false;">Get text

 <p id="display"></p>

</div>

</body>

CIS 4004: AJAX – Part 1 Page 40 © Dr. Mark Llewellyn

User on initial page.

Next step is to click

the link “Get text”.

CIS 4004: AJAX – Part 1 Page 41 © Dr. Mark Llewellyn

User has clicked the link and the server

has returned the contents of the file.

The JavaScript has altered the DOM

by modifying the innerHTML property

of the elements with id = “display”.

CIS 4004: AJAX – Part 1 Page 42 © Dr. Mark Llewellyn

Web Server

Ajax Wrapper

XHR Object

ajaxRequest(‘basic_text.txt’, cbReadFile) cbReadFile()

1

2

3 4

5

6

How The Request Is Processed

The web page

JavaScript

file

CIS 4004: AJAX – Part 1 Page 43 © Dr. Mark Llewellyn

 • There is a problem with using two functions for an Ajax call –

one to make the call and the other to handle the callback.

• The problem is that you are passing control from one function to

the other. However, because that control goes via the Ajax

function, you can’t at that time pass data from the calling function

to the callback function, because one does not directly call the

other.

• The variables that existed in the calling function are not

accessible to the callback function.

• This is a problem of maintaining state in your application – where

important values must persist for later reference.

• The following example will illustrate this concept.

Using An Object Literal To Maintain State

CIS 4004: AJAX – Part 1 Page 44 © Dr. Mark Llewellyn

 • In this example, we’ll get a user’s name from a form field so that

we can display a personalized welcome message. The markup is

shown below:

Using An Object Literal To Maintain State

CIS 4004: AJAX – Part 1 Page 45 © Dr. Mark Llewellyn

 • Notice in the markup that I’m using the onsubmit as the event

for the Submit button. Unlike onclick, onsubmit can also

be triggered from the keyboard if the button has focus.

• Also, I’ve left the form action value as # - an anchor link, and not

supplied a URL. Normally, and more correctly, you would put a

URL here to the server side script that would process the data in

the form if JavaScript were not available. I omitted this here so

you won’t confuse the point of this example.

• Once, the user’s name has been obtained, we’ll fetch the

welcome message from the server and add the user’s name to it.

• I’ve modified the calling function and the callback functions as

shown on the next page.

Using An Object Literal To Maintain State

CIS 4004: AJAX – Part 1 Page 46 © Dr. Mark Llewellyn

CIS 4004: AJAX – Part 1 Page 47 © Dr. Mark Llewellyn

User enters their name

and clicks “Go”.

CIS 4004: AJAX – Part 1 Page 48 © Dr. Mark Llewellyn

Nothing happened! (Some

browsers will return an error in

the error console, others will

not. Simply nothing happens.

CIS 4004: AJAX – Part 1 Page 49 © Dr. Mark Llewellyn

 • The solution to this scoping problem is to refactor the code

involving the two functions as an object literal where both the

call and callback functions share the same scope (the object).

• The refactored code is shown on the next page:

Using An Object Literal To Maintain State

CIS 4004: AJAX – Part 1 Page 50 © Dr. Mark Llewellyn

CIS 4004: AJAX – Part 1 Page 51 © Dr. Mark Llewellyn

CIS 4004: AJAX – Part 1 Page 52 © Dr. Mark Llewellyn

CIS 4004: AJAX – Part 1 Page 53 © Dr. Mark Llewellyn

User clicked the “go” button without

entering their name. The code uses

the optional/default “Visitor” value in

this case.

